Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(4): 16, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435921

RESUMO

Purpose: Prior studies have demonstrated the significance of specific cis-regulatory variants in retinal disease; however, determining the functional impact of regulatory variants remains a major challenge. In this study, we utilized a machine learning approach, trained on epigenomic data from the adult human retina, to systematically quantify the predicted impact of cis-regulatory variants. Methods: We used human retinal DNA accessibility data (ATAC-seq) to determine a set of 18.9k high-confidence, putative cis-regulatory elements. Eighty percent of these elements were used to train a machine learning model utilizing a gapped k-mer support vector machine-based approach. In silico saturation mutagenesis and variant scoring was applied to predict the functional impact of all potential single nucleotide variants within cis-regulatory elements. Impact scores were tested in a 20% hold-out dataset and compared to allele population frequency, phylogenetic conservation, transcription factor (TF) binding motifs, and existing massively parallel reporter assay data. Results: We generated a model that distinguishes between human retinal regulatory elements and negative test sequences with 95% accuracy. Among a hold-out test set of 3.7k human retinal CREs, all possible single nucleotide variants were scored. Variants with negative impact scores correlated with higher phylogenetic conservation of the reference allele, disruption of predicted TF binding motifs, and massively parallel reporter expression. Conclusions: We demonstrated the utility of human retinal epigenomic data to train a machine learning model for the purpose of predicting the impact of non-coding regulatory sequence variants. Our model accurately scored sequences and predicted putative transcription factor binding motifs. This approach has the potential to expedite the characterization of pathogenic non-coding sequence variants in the context of unexplained retinal disease. Translational Relevance: This workflow and resulting dataset serve as a promising genomic tool to facilitate the clinical prioritization of functionally disruptive non-coding mutations in the retina.


Assuntos
Aprendizado de Máquina , Doenças Retinianas , Humanos , Nucleotídeos , Filogenia , Retina , Doenças Retinianas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 10(1): 13615, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788677

RESUMO

Diseases and damage to the retina lead to losses in retinal neurons and eventual visual impairment. Although the mammalian retina has no inherent regenerative capabilities, fish have robust regeneration from Müller glia (MG). Recently, we have shown that driving expression of Ascl1 in adult mouse MG stimulates neural regeneration. The regeneration observed in the mouse is limited in the variety of neurons that can be derived from MG; Ascl1-expressing MG primarily generate bipolar cells. To better understand the limits of MG-based regeneration in mouse retinas, we used ATAC- and RNA-seq to compare newborn progenitors, immature MG (P8-P12), and mature MG. Our analysis demonstrated developmental differences in gene expression and accessible chromatin between progenitors and MG, primarily in neurogenic genes. Overexpression of Ascl1 is more effective in reprogramming immature MG, than mature MG, consistent with a more progenitor-like epigenetic landscape in the former. We also used ASCL1 ChIPseq to compare the differences in ASCL1 binding in progenitors and reprogrammed MG. We find that bipolar-specific accessible regions are more frequently linked to bHLH motifs and ASCL1 binding. Overall, our analysis indicates a loss of neurogenic gene expression and motif accessibility during glial maturation that may prevent efficient reprogramming.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/genética , Células Ependimogliais/citologia , Perfilação da Expressão Gênica/métodos , Animais , Células Cultivadas , Reprogramação Celular , Cromatina/metabolismo , Células Ependimogliais/metabolismo , Epigenômica , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Regeneração Nervosa , Retina , Análise de Sequência de RNA
3.
Semin Cell Dev Biol ; 97: 63-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951894

RESUMO

Damage to neuronal tissues in mammals leads to permanent loss of tissue function that can have major health consequences. While mammals have no inherent regenerative capacity to functionally repair neuronal tissue, other species such as amphibians and teleost fish readily replace damaged tissue. The exploration of development and native regeneration can thus inform the process of inducing regeneration in non-regenerative systems, which can be used to develop new therapeutics. Increasing evidence points to an epigenetic component in the regulation of the changes in cellular gene expression necessary for regeneration. In this review, we compare evidence of epigenetic roles in development and regeneration of neuronal tissue. We have focused on three key systems of important clinical significance: the neural retina, the inner ear, and the spinal cord in regenerative and non-regenerative species. While evidence for epigenetic regulation of regeneration is still limited, changes in DNA accessibility, histone acetylation and DNA methylation have all emerged as key elements in this process. To date, most studies have used broadly acting experimental manipulations to establish a role for epigenetics in regeneration, but the advent of more targeted approaches to modify the epigenome will be critical to dissecting the relative contributions of these regulatory factors in this process and the development of methods to stimulate the regeneration in those organisms like ourselves where only limited regeneration occurs in these neural systems.


Assuntos
Epigênese Genética/genética , Regeneração Nervosa/genética , Animais , Humanos
4.
Sci Rep ; 9(1): 9060, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227770

RESUMO

Hearing loss is often due to the absence or the degeneration of hair cells in the cochlea. Understanding the mechanisms regulating the generation of hair cells may therefore lead to better treatments for hearing disorders. To elucidate the transcriptional control mechanisms specifying the progenitor cells (i.e. prosensory cells) that generate the hair cells and support cells critical for hearing function, we compared chromatin accessibility using ATAC-seq in sorted prosensory cells (Sox2-EGFP+) and surrounding cells (Sox2-EGFP-) from E12, E14.5 and E16 cochlear ducts. In Sox2-EGFP+, we find greater accessibility in and near genes restricted in expression to the prosensory region of the cochlear duct including Sox2, Isl1, Eya1 and Pou4f3. Furthermore, we find significant enrichment for the consensus binding sites of Sox2, Six1 and Gata3-transcription factors required for prosensory development-in the open chromatin regions. Over 2,200 regions displayed differential accessibility with developmental time in Sox2-EGFP+ cells, with most changes in the E12-14.5 window. Open chromatin regions detected in Sox2-EGFP+ cells map to over 48,000 orthologous regions in the human genome that include regions in genes linked to deafness. Our results reveal a dynamic landscape of open chromatin in prosensory cells with potential implications for cochlear development and disease.


Assuntos
Cromatina/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Cóclea/embriologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
5.
Nature ; 548(7665): 103-107, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28746305

RESUMO

Many retinal diseases lead to the loss of retinal neurons and cause visual impairment. The adult mammalian retina has little capacity for regeneration. By contrast, teleost fish functionally regenerate their retina following injury, and Müller glia (MG) are the source of regenerated neurons. The proneural transcription factor Ascl1 is upregulated in MG after retinal damage in zebrafish and is necessary for regeneration. Although Ascl1 is not expressed in mammalian MG after injury, forced expression of Ascl1 in mouse MG induces a neurogenic state in vitro and in vivo after NMDA (N-methyl-d-aspartate) damage in young mice. However, by postnatal day 16, mouse MG lose neurogenic capacity, despite Ascl1 overexpression. Loss of neurogenic capacity in mature MG is accompanied by reduced chromatin accessibility, suggesting that epigenetic factors limit regeneration. Here we show that MG-specific overexpression of Ascl1, together with a histone deacetylase inhibitor, enables adult mice to generate neurons from MG after retinal injury. The MG-derived neurons express markers of inner retinal neurons, synapse with host retinal neurons, and respond to light. Using an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we show that the histone deacetylase inhibitor promotes accessibility at key gene loci in the MG, and allows more effective reprogramming. Our results thus provide a new approach for the treatment of blinding retinal diseases.


Assuntos
Regeneração Nervosa , Neurogênese , Neuroglia/citologia , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epistasia Genética/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Retina/citologia , Retina/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...